Engineering Considerations for the Proper Evaluation and Effective Use of Pile Static and Dynamic Testing Results - Lessons Learned from Case Studies

Mohamad Hussein, P.E.

STGEC-2025

Southeastern Transportation Geotechnical Engineering Conference September 15 to September 18, 2025 Williamsburg, Virginia

Southeastern Transportation Geotechnical Engineering Conference

Caesar's Bridge across the Rhine, 55 BC

Pile Design and **Construction Practice**

Sixth Edition

CRC Press

NATIONAL COOPERATIVE

Developing Production Pile Driving Criteria from Test Pile Data

A Synthesis of Highway Practice

TRANSPORTATION RESEARCH BOARD

Precast, prestressed concrete pilings are often the preferred choice for permanent, durable, and economical foundations especially in marine or bridge environments - due to their excellent adaptability and resistance to corrosion. Piles can be spliced together to create longer piles. They are used primarily where longer piles are required but transportation needs make the longer

Finishes: They are cast in a horizontal position, with an as-cast finish and rotated to their final position at the jobsite by the

Transportation Engineering

How Precast Builds About Precast

Beams and Columns Modular Components Miscellaneous Components Manufacturing Design & Brand Standards

Floors and Roofs

Guides and Manuals Sustainability Resources Research and Development Typical shapes: 18-in.-square (the most common), plus octagonal and round (cylindrical) in sizes as needed. Larger sizes may

Design Resources % Load Tables and Span Charts

Related Resources & Articles & Precast Structural Systems

_/PDCA Recommended Design **Specifications For Driven Bearing Piles**

STANDARD SPECIFICATIONS FOR ROADS AND STRUCTURES

MISSISSIPPI
STANDARD SPECIFICATIONS
FOR
ROAD AND BRIDGE
CONSTRUCTION

MISSISSIPPI
DEPARTMENT OF TRANSPORTATION
JACKSON

2022

STANDARD
SPECIFICATIONS
FOR
HIGHWAY CONSTRUCTION

FLORIDA DEPARTMENT OF TRANSPORTATION

Image courtesy of BCC Engineering

STRUCTURES MANUAL

Introduction - General Introduction

Volume 1 - Structures Design Guidelines

Steel Piles

Composite and non-uniform Piles

There are dozens of hammer manufacturers, and hundreds of hammer models.

Dynamic Pile Driving Resistance

Static Load
Bearing Capacity

ASTM D1143/D1143M-20 (i)

Standard Test Methods for Deep Foundation Elements Under Static Axial Compressive Load

Static Testing of Deep Foundations

Office of Technology Applications 400 Seventh Street, SW. Washington, D.C. 20590

February 1992

Publication No. FHWA-SA-91-042

Dynamic Pile Driving Resistance Static Load Bearing Capacity

CASE WESTERN RESERVE UNIVERSITY PILING RESEARCH PROJECT 1964-1976

Funded by:

Ohio Department of Transportation Federal Highway Administration

And

Highway Organizations of:

- Florida
- Georgia
- Idaho
- Minnesota
- New York
- Pennsylvania

DYNAMIC PILE TESTING (DLT)

Hammer System Performance

TS: 20.5 TB: 17.4

TS: 51.2 TB: 7.7

Pile Damage: BTA, LTD

β	Condition				
100	Uniform				
80 - 100	Slight damage				
60 - 80	Significant damage				
<60	Broken				

Dynamic Load Testing

CAPWAP SUMMARY RESULTS

	'otal CAPV	VAP Capaci	tv: 1100		AP SUMMARY Shaft	906.0; at T	oe 194.0	kips	
	Soil Sgmnt No.	Dist. Below Gages	Depth Below Grade ft	Ru kips	Force in Pile	Sum of Ru kips	Unit Resist. (Depth) kips/ft	Unit Resist. (Area)	Smith Damping Factor
		10	10	kips	kips	Kips	KIPS/IC	ASI	5/1
State Person and the Control of the					1100.0				
LALI-LALI	1	6.7	6.7	0.0	1100.0	0.0	0.00	0.00	0.0
THE STREET	2	13.4	13.4	0.0	1100.0	0.0	0.00	0.00	0.0
一	3	20.1	20.1	0.0	1100.0	0.0	0.00	0.00	0.0
	4	26.8	26.8	4.9	1095.1	4.9	0.73	0.07	0.4
	5	33.4	33.4	30.8	1064.3	35.7	4.61	0.46	0.4
888	6	40.1	40.1	35.2	1029.1	70.9	5.26	0.53	0.4
	7	46.8	46.8	57.2	971.9	128.1	8.55	0.86	0.4
	8	53.5	53.5	57.2	914.7	185.3	8.55	0.86	0.4
	9	60.2	60.2	57.2	857.5	242.5	8.55	0.86	0.4
	10	66.9	66.9	57.2	800.3	299.7	8.55	0.86	0.4
CAPWAP	11	73.6	73.6	79.3	721.0	379.0	11.86	1.19	0.4
	12	80.3	80.3	104.6	616.4	483.6	15.64	1.56	0.4
	13	86.9	86.9	105.6	510.8	589.2	15.79	1.58	0.4
Analysis	14	93.6	93.6	105.6	405.2	694.8	15.79	1.58	0.4
Allalysis	15	100.3	100.3	105.6	299.6	800.4	15.79	1.58	0.4
	16	107.0	107.0	105.6	194.0	906.0	15.79	1.58	0.4
Results	Avg. Sh	aft		56.6			8.47	0.85	0.4
	То	е		194.0				31.04	0.1
	oil Model Parameters/Extensions				Sì	naft To	oe .		
	make		(i	n)		(0.15 0.2	22	
	ase Damping Factor					1	1.43 0.3	11	
	amping Type					Visc	cous Sm+Vis	SC	
	eloading	Level	(8	of Ru)			100 10	00	
	Inloading Level (% of Ru)						1		
	tesistance Gap (included in Toe Quake) (in)						0.0	02	
	APWAP mat	ch qualit	v =	3.24	(Wa	ve Up Match	: RSA = 0		

Blow Count

Blow Count

393; RF: 1.01; A3 (K4592) CAL: 369; RF: 1.01

240 b/ft

240 b/ft

(T= 41.0 ms, max= 1.147 x Top)

(Z= 33.4 ft, T= 43.3 ms)

(Z= 33.4 ft, T= 71.7 ms)

52.1 kip-ft; max. Measured Top Displ. (DMX) = 0.50 in

0.05 in;

0.05 in;

2.5 ksi

2.9 ksi

-0.22 ksi

F1 (E206) CAL: 92.0; RF: 0.98; F4 (I635) CAL: 95.9; RF: 0.98

Ibserved: Final Set

computed: Final Set

ax. Top Comp. Stress

ax. Comp. Stress

ax. Tens. Stress ax. Energy (EMX)

A2 (K3680) CAL:

PDA/CAPWAP Analysis Results

CAPWAP analyses and Static Load Test Results Correlations

Considerations for Pile Capacity Assessment:

- · Which restrike blow data to analyze.
- · Hammer energy insufficient to fully mobilize all soil/rock resistance.
- Pile capacity changes due to time-dependent soil strength changes.
- · Questionable load test results
- Assessment of load bearing capacity of a damaged pile.

Geotechnical Special Publication No. 180

FROM RESEARCH TO PRACTICE

In Geotechnical Engineering

Analysis of Post-Installation Dynamic Load Test Data for Capacity Evaluation of Deep Foundations

Frank Rausche¹, P.E., M. ASCE, Garland Likins², P.E., M.ASCE, and Mohamad H. Hussein³, P.E., M. ASCE

Criteria for Dynamic Load Test (DLT) data evaluation:

The toe should achieve a total displacement (elastic + cumulative permanent) of D/60.

24-inch Prestressed Concrete Pile, 65 ft. 10 blows for 1.8 inches set.

The 10 mm (24/60 = 0.4)") failure toe displacement was reached by the second blow (2200 kN).

Increase of capacity due to more end bearing with successive blows.

Blows 1, 2, 3, 4, ... and 10 shown.

20-inch diameter, 70 ft long auger-cast pile in clay. 13-kips hammer, three blows with sets of 1, 2, and 3 mm (0.04, 0.08, and 0.11 inch).

The 20/60 = 0.33 inch (9 mm) failure toe displacement was reached by the third blow.

5-ft diameter, 67 ft long drilled shaft. 60-ton hammer,

4 blows for 0.55 inch (14 mm).

End bearing not fully activated under blows 1 and 2, and failure toe displacement was reached by the fourth blow.

Considerations for Pile Capacity Assessment:

 Hammer energy insufficient to fully mobilize all soil/rock resistance (i.e., low pile displacement per blow).

• Pile capacity increases due to timedependent soil strength changes effect (e.g., setup). The Use of Superposition for Evaluating Pile Capacity

Mohamad H. Hussein GRL Engineers

Michael R. Sharp URS Corporation

William "Bubba" Knight PSI (previously w/FDOT)

Test Pile Driving and Testing

Menck MHF 5-12

Summary of PDA/CAPWAP and Static Load Test Results

		S	Static Capacity, Kips			
	Blow Count	Skin Friction	Total Capacity			
End of Driving	130 blows/foot	200	890	1090		

Static Load Test

Summary of PDA/CAPWAP and Static Load Test Results

		St	Static Capacity, Kips			
	Blow Count	Skin Friction	End Bearing	Total Capacity		
End of Driving	130 blows/foot	200	890	1090		
Static Load Test				1630		

Dynamic testing and data analysis results – restrike after static load test

Summary of PDA/CAPWAP and Static Load Test Results

		St	Static Capacity, Kips			
	Blow Count	Skin Friction	End Bearing	Total Capacity		
End of Driving	130 blows/foot	200	890	1090		
Static Load Test				1630		
Restrike	10 blows/inch	745	230	975		

Summary of PDA/CAPWAP and Static Load Test Results

			Static Capacity, Kips			
	Blow Count	Skin End Friction Bearing		Total Capacity		
End of Driving	130 blows/foot	200	890	1090		
Static Load Test				1630		
Restrike	10 blows/inch	735	230	975		
Superposition		735	890	1625		

Comparison between Static Load test and CAPWAP results

In cases of hammer energy limiting pile displacement/set, combining the pile end bearing from end of driving and skin friction from restrike testing provides best estimate for total, long-term pile capacity. (if no relaxation)

End o	of Initial 1	Driving
FT1	353	kips
FMX	353	kips
RX9	400	kips
ROF	1.13	%
STK	7.03	ft
EMX	9.9	ft-kips
CSX	22.8	ksi
CSB	27.8	ksi

Begini	ning of R	estrike
FT1	372	kips
FMX	372	kips
RX9	271	kips
ROF	0.73	%
STK	7.31	ft
EMX	10.9	ft-kips
CSX	24.0	ksi
CSB	20.9	ksi

Considerations for Pile Capacity Assessment:

· Unexpected testing result.

· Combined dynamic and static testing.

Knowledge is Bliss - A Case for Supplemental Pile Testing to Ascertain Fidelity

Mohamad H. Hussein¹, P.E., M.ASCE Ross T. McGillivray², P.E., M.ASCE Dan A. Brown³, Ph.D., P.E., M.ASCE

¹Vice Pro ²Senior Project En ³ President, I

Full-Scale Testing Foundation Design

oil e. com> ay@ardaman. com> soci ates. com>

Honoring Bengt H. Fellenius

The 2.6-mile long, \$243-million contract, twin bridges were supported on 36-inch square, hollow with 23-inch circular void, prestressed concrete piles with lengths up to 140 feet and the pile under consideration had a required capacity of 5760 kN (1,295 kips)

Static load testing result

Results of dynamic testing performed after static load test

Results of dynamic testing at the end of 8.5 ft pile redrive

Combined dynamic testing results – end of redrive and setup effects Predicted before the performance of the second static load test

Second static load testing result

Predicted with dynamic testing Measured with static load test

Combing dynamic testing with static load testing provided the means to explain curious results and for the proper assessment of pile load bearing capacity.

Considerations for Pile Capacity Assessment:

 Assessment of the load bearing capacity of a pile with damage.

Prestressed Concrete Pile: 24" square, 130' long.

Nominal Bearing Resistance, NBR = 635 kips (ultimate load bearing capacity).

Pile driven with an open-end diesel D-62 hammer.

At final penetration of 125 feet, end of driving blow count was 61 blows/foot with 7.9 ft hammer stroke height.

Two weeks later, **PDA pile restrike test** had 13 blows for 1/16" pile set with 8.1 ft hammer stroke height.

CAPWAP data analysis

			PILE PROFI	LE AND PI	LE MODEL				
	Depth				ılus	Spec. Weight		Perim.	
	ft	•	in ²	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ksi	lb/ft ³		ft	
	0.00		576.00	6164.1		150.000		8.000	
	127.00		576.00	6164.1 150.000		6164.1 150.000		8.000	
Toe Area			4.000	ft ²					
Segmnt	Dist.	Impedance	Imped.		Tension	Com	pression	Perim.	
Number	B.G.		Change	Slack	Eff.	Slack	Eff.	11.	
	ft	kips/ft/s	8	in	1000	in	10,700	ft	
1	3,34	257.35	U.80	0.000	0.000	-0.000	0.000	8.000	
24	80.21	128.00	-50.26	0.000	0.000	-0.000	0.000	8.000	
25	83.55	257.35	0.08	0.000	0.000	-0.000	0.000	8.000	
38	127.00	257.35	0.00	0.000	0.000	-0.000	0.000	8.000	

GRL Engineers, Inc. OP: GRL-							GRL-RM		
CAPWAP SUMMARY RESULTS									
Total CA	PWAP Capa	city:	1484.9;	along Shaft	1374.	0; at Toe	110.9	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith	Quake
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping	0.03255
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor	
11111	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft	iı
	11000000	0.08.04		1484.9	1994 1994 20	10 (10 (10 (10 (10 (10 (10 (10 (10 (10 (11681(016.00)	1.147.4V.11	
1	6.7	4.7	0.0	1484.9	0.0	0.00	0.00	0.000	0.11
2	13.4	11.4	0.2	1484.7	0.2	0.03	0.00	0.300	0.11
3	20.1	18.1	10.9	1473.8	11.1	1.63	0.20	0.300	0.11
4	26.7	24.7	12.9	1460.9	24.0	1.93	0.24	0.300	0.11
5	33.4	31.4	35.5	1425.4	59.5	5.31	0.66	0.300	0.11
6	40.1	38.1	72.0	1353.4	131.5	10.77	1.35	0.300	0.11
7	46.8	44.8	72.0	1281.4	203.5	10.77	1.35	0.300	0.11
8	53.5	51.5	72.0	1209.4	275.5	10.77	1.35	0.300	0.11
9	60.2	58.2	72.0	1137.4	347.5	10.77	1.35	0.300	0.11
10	66.8	64.8	75.0	1062.4	422.5	11.22	1.40	0.300	0.11
11	72.5			000.0		11.89	1.49	0.300	0.11
12	80.2	1120001201			586.0	12.57	1.57	0.300	0.11
13	00.5	U T . J	T00.4	132.3	072.3	15.92	1.99	0.300	0.11
14	93.6	91.6	113.6	678.9	806.0	17.00	2.12	0.300	0.11
15	100.3	98.3	113.6	565.3	919.6	17.00	2.12	0.300	0.11
16	106.9	104.9	113.6	451.7	1033.2	17.00	2.12	0.300	0.11
17	113.6	111.6	113.6	338.1	1146.8	17.00	2.12	0.300	0.11
18	120.3	118.3	113.6	224.5	1260.4	17.00	2.12	0.300	0.10
19	127.0	125.0	113.6	110.9	1374.0	17.00	2.12	0.300	0.10
Avg. Sl	naft		72.3			10.99	1.37	0.300	0.11
T	oe e		110.9				27.72	0.384	0.10
Soil Mod	el Parame	ters/Ex	tensions			Shaft	Toe	1.1161	1011

Testing results indicated the pile is partially damaged at 80 feet, and that it has skin friction resistance down to this location that meets 92% of the required pile ultimate load bearing capacity.

The pile was accepted in-place based on engineering considerations of the testing results and pile-specific design requirements.

CONCLUSION:

In addition to good data quality and competent analysis, engineering considerations are also needed for the proper and effective use of testing results for foundation evaluations.

Thank you.

www.GRLengineers.com